TrajectoryNet: an embedded GPS trajectory representation for point-based classification using recurrent neural networks

نویسندگان

  • Xiang Jiang
  • Erico N. de Souza
  • Ahmad Pesaranghader
  • Baifan Hu
  • Daniel L. Silver
  • Stan Matwin
چکیده

Understanding and discovering knowledge from GPS (Global Positioning System) traces of human activities is an essential topic in mobility-based urban computing. We propose TrajectoryNet—a neural network architecture for point-based trajectory classi€cation to infer real world human transportation modes from GPS traces. To overcome the challenge of capturing the underlying latent factors in the low-dimensional and heterogeneous feature space imposed by GPS data, we develop a novel representation that embeds the original feature space into another space that can be understood as a form of basis expansion. We also enrich the feature space via segment-based information and use Maxout activations to improve the predictive power of Recurrent Neural Networks (RNNs). We achieve over 98% classi€cation accuracy when detecting four types of transportation modes, outperforming existing models without additional sensory data or location-based prior knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data

Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...

متن کامل

Vision-based waypoint following using templates and artificial neural networks

This paper presents a learning-based vehicle control system capable of navigating autonomously. Our approach is based on image processing, road and navigable area recognition, template matching classification for navigation control, and trajectory selection based on GPS way-points. The vehicle follows a trajectory defined by GPS points avoiding obstacles using a single monocular camera and main...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

A New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment

The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017